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The materials used in equipment operating at high temperatures 
usually behave anisotropically with respect to the creep process. For 
certain materials, especially light alloys, the anisotropy resulting 
from previous processing cannot easily be removed by subsequent heat 
treatment and in designing parts it is necessary to take into account 
the real, and not the averaged properties of the material. Reference 
[1] presents experimental results on the creep of sheet material D1. 
In the interval of stresses and temperatures investigated it was shown 
that the material is orthotropic and its behavior is quite well described 
by the relation 

r} ~ BIG n. 

Here ~ is the creep strain, B i and n are material constants, n being 
constant in all directions. This particular case of anisotropy is char- 
acterized by similarity of the creep strain rates for different directions 
and the same stresses, and, on account of the relative simplicity of 
the mathematical description, is most frequently mentioned in the 
periodical literature. This paper presents the results of experiments 
on AMG-8 material and provides some possibilities of describing the 
behavior under anisotropic creep conditionS. 

1. In describing the behavior of a material in steady-state creep 
under conditions of one-dimensional loading much use is made of 
empirical relations of the type 

~1 = Bon, 11 = Ke f~a. (1.1) 

The second equation is more convenient for describing anisotropic 
creep when in analytic expressions (1.1) both constants vary with the 
orientation of the test piece subjected to standard tensile or compres- 
sive testing. Henceforth we wilt assume that the behavior of the ma- 
terial under conditions of one-dimensional creep is well described by 
the second relation of type (1.1). 

As noted previously [1], for visco-nonlinear process described in 
the one-dimensional case by the first relation of type (1.1), the ex- 
perimental determination and comparison with theory of the transverse 
strain rate in tension and compression give a satisfactory confirmation 
of the assumed existence of a flow potential in the form of a function 
of a quadratic form of the stresses with coefficients depending on the 
properties of the material. It is natural to assume that a flow potential 
also exists in the more general case of anisotropy, when both constants 
vary in relations (1.1) describing the behavior of the material under 
one-dimensional loading. In this case we attempt to represent the 
flow potential analytically as a function of two quadratic forms of the 
stresses, i. e., we assume that the following relations hold: 

O0 
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Apart from any specific limitations, the potential function must 
satisfy two obvious conditions: a) the creep strain rate determined in 
terms of the potential from expression (1.2) must, in the case of one- 
dimensional loading, coincide with the second expression (1.1); b) 
in the case of vanishingly small anisotropy, when T and S are trans- 
formed into stress intensities, relation (1.2) must describe the creep 
process in accordance with the Mises criterion associated with its 

flow law. 
Both these conditions will be satisfied if the potential is repre- 

sented in the form 

/ T \  f g '  
o = ~ [-3-) e ,. ( 1 . ~ )  

where q is an arbitrary function of the ratio of the two quadratic 
forms. The strain rate tensor components will have the form 

.fl,j_~e .V-~ (~,T'S--S'TS 2 -J- eO T__~) 

~'=a(TIS)' T'=~, s "  = ~  . ( 1 . 4 )  
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Fig. 1 

The specific power dissipated in creep will be 

w = n~J cai= q) l / ~ .  (1.5) 

In the case in question the surfaces ~ = const and W = const are 
not similar and the strain rate vectors, generally speaking, are not 
orthogonal to the surfaces of the constant specified dissipated power. 

If the material behaves in relation to the creep process like an 
orthotropic incompressible medium, then, by analogy with [1], it 
is easy to establish that in the coordinate system associated with the 
principal axes of anisotropy quadratic forms T and S may be written, 

respectively, as 

T = A n (o~1 - -  %3) 3 + A~2 (033 - -  on)* + A33 (011 - -  02~) 2 + 
+ 2A120~  + 2A~gr2a2+ 2A31%~, 

S = BII (O~, - -  Oss)~ + B~a (0~ - -  crn)~ + Bz3 (el l  - -  a22) 2 + 
+ 2Bxzaaz ~ "~ 2 B ~ z a z +  2B~loa#.  (1.6)  

The coefficients of the quadratic forms Aij and Bij are determined 
from creep tests in simple tension or compression by comparing the 
second of expressions (1. t )  and expression (1.4). 

Thus, three series of experiments in the three principal directions 

of anisotropy, respectively, give 

~1 = ] / A n  -4- As, 

[A~* + A n \  

= ]/'A--~+ An, 

[A~2 + Aas~ 

[ Au + A ~  
K3 = ~tp ~Bn + B2~] ~ (1.7) 

Hence, by assigning an analytic expression for the function 9, 
for example, setting r = MT/S or ~0 = MeT/S, where M is a dimen- 
sionality constant, it is easy to determine the first three pairs of co- 
efficients. The other three pairs can be determined from tensile or 
compressive creep tests on test pieces cut in directions not lying in 
the same plane and not coinciding with the principal directions of 

anisotropy of the test mater ia l  
Let, for example, a series of creep tests be conducted on test 

pieces cut in a direction forming an angle of 45 ~ with the principal 
axis of anisotropy X I in one of the principal planes of anisotropy 
X1X2, and let the constants K" and I3' in (1.1) be determined fl'om 
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this direction. The coefficients of the quadratic forms Aij and Bij 
are not invariant; their values depend on the choice of coordinate 
system. And since the quadratic forms T, S have their simplest form 
(1.6) in the coordinate system associated with the principal axes of 
anisotropy, it is also convenient to refer the stress tensor components 
to the same coordinate system. Hence, making the necessary con- 
version and repeating the same arguments as in [1], we obtain 

. . . . .  fAn -[- A~2 q- 2Az2\ 
Z~3'= V'A;t@A2;-~2A,2, r = ~ ( P \ h l t - [ - B ~ - 2 B z 2 ) '  (1.8) 

from which Alz and B12 are determined at known values of All , A2s 
and Bn, ~, 

:const ~ 
Fig. 2 

Performing analogous operations in the other planes, we find the 
remaining coefficients of the quadratic forms and thus determine the 
flow potential (1.2). 

2. A typical  mater ia l  whose behavior under certain stress and 

temperature conditions is described in the case of one-dimensional 

loading by relations of type (1.1), with both constants varying as a 

function of the direction in which the test piece is cut, is AMG-3 

alloy taken in the in i t ia l  state in the form of a rod 55 mm in dia-  
meter. 

The test piece blanks were cut as follows; the rod was cut into 

right cylinders 50 and 15 mm tall  and skew cylinders 15 mm tal l  

with the axis inclined to the al t i tude at an angle of 45*. Four pris- 

mat ic  blanks measuring 15 x 15 mm 2 were cut from the center of 
the first cylinders for test pieces with axes coinciding with the di- 

rection of the axis of the in i t ia l  rod; from the second cylinders we 

cut two blanks of the same size for test pieces with axes lying in 

arbitrary directions in the diametraI plane of the starting rod; and 

from the third cylinders we cut two similar blanks for test pieces 

with axes inclined at an angle of 45 ~ to the axis of the starting rod. 

From these blacks we made test pieces of the following type: a) for 

tensile tests--circular, with a gauge length of 20 mm and a diameter 

of 8 mm; b) for compressive tests-rectangular,  with a cross section 

measuring 10 x 10 mm 2 and a gauge length of 35 mm. For each di- 
rection we prepared and tested ten pieces in tension and five in com- 

pression. 

The tests were performed in the stress interval  from 6 to 12 kg /  

/ r am 2 at '200 ~ C. Some tests were performed at a stress of 5 kg/mmZ; 

these showed that at the given stress and below the creep process is 

only poorly described by relations (1.1) owing to the clearly expressed 
hardening. With increase in the test stress level  the first section of 

the creep curve is much reduced and at streSses of 8 k g / m m  2 and 

above is pract ical ly absent. In al l  the tests we measured the axial  

elongation and area reduction of the test pieces. Calculations of the 

three principal creep strains quite satisfactorily confirmed the hypo- 

thesis of incompressibili ty of the mater ia l  under creep conditions, 

eSpecially at high stress levels. 

After stabil ization of the temperature at 200 ~ C, both tensile and 
the compressive tests were performed in accordance with the foIlow- 

ing four programs: 1) a load corresponding to the minimum stress o = 

= 6 k g / m m  2 was applied and then, at intervals of 1 hr in the first 

three or four steps and at intervals of 0.5 hr in the subsequent steps, 
the stress was increased by An = 1 kg /mm 2 to the maximum value of 
o = 12 kg/mmZ; 2) the maximum load of o = 12 kg /mm 2 was applied 
and then, at intervals of 0.5 hr for the first two or three steps and 1 
hr for the subsequent steps, the stress was reduced by An = 1 kg /mm 2 
to the minimum value of o = 6 kg /mm s. The other two programs 
were similar, with the same t ime intervals bur starting from a load 
of o = 8 kg /mm 2, the stress then being increased or decreased by 
An = 1 kg/ tnm z to the maximum and minimum values, respectively. 

In each t ime interval we recorded the creep curve, treating the 
application of the new stress as the ini t ial  state. The curves thus con- 
structed for each stress in accordance with all four test programs, when 
superimposed, formed a quite narrow beam with the usual experimen- 

tal scatter, but without any systematic  deviation peculiar to any par- 
t icular program. An exception was the last steps of the first and second 

programs, where the third stage of creep usually developed. These 
curves always passed above the center l ine of the beam and, as a rule, 

were not included in the calculations. This quite well confirms the 
hypothesis that the material  behaves l ike a visco-nonlinear medium 
without hardening, and under the above-mentioned stress and tem- 

perature conditions and in a l imited t ime interval its behavior does 
not depend on the loading history and consequently can be described 

by relations of type (1.1) [2]. 
Figure 1 presents averaged values of the creep diagrams obtained 

for test pieces cut: a) along the axis of the rod, b) in the diametral  

plane of the rod, c) at an angle of 45 ~ to the rod axis, where the 

numbers 6, 7, 8, etc. attached to the curves denote the stress at 

which the particular diagram was obtained. It is d e a r  that at o = 6 

k g / m m  2 the creep curves for different directions almost coincide, 

i . e . ,  at low stresses the material  behaves like an isotropic m a t e r i a l -  
the degree of anisotropy increases with increase in stress level.  A 

similar effect was observed in light alloys by Johnson [3], but from 

a somewhat different standpoint. 
As indicated above, the behavior of the mater ia l  is quite well 

described by the second of relations (1.1), and in analyzing the creep 

test data for test pieces cut in the above-mentioned three directions 

the following values of the constants were obtained: 

[~t = 0.753, [~2 = t.022, 6' = 1.097 [mm2/kg]  

K1 = 3.28 �9 10-% K2 = 1,10 -6 , K'  = 0.75-t0 -6 [1/hr -1] :(2.1) 

Here the subscript 1 denotes the direction along the axis, sub- 

script 2 an arbitrary direction in the diametral  plane of the rod, while 

a prime denotes the constants obtained from tests on test pieces cut 

at an angle of 45" to the axis from an arbitrary plane through the axis 

of the rod. Thus, under creep conditions the material  behaves l ike a 

transversely isotropie medium with both constants in the second of 

expressions (1.1) varying. The direction coinciding with the rod axis 

and any directions in the diametral  plane of the rod will  be principal 
directions of anisotropy. By virtue of the above-mentioned symmetry 

of the mater ia l  properties, the number of independent coefficients in 

quadratic forms (1.6) is reduced m three, which may be defined in 

terms of the experimental  constants (2.1). In fact, taking, for example, 

r (T/S) = Me T/s, (2.2) 

and substituting values of the constants from (2.1) into (1.7) and (1.8), 
we find 

M = t  [kg/mmZ.hr]  , Azt=0.76t ,  A~.~ = A ~  =0 .283 ,  

A12 ~ Ale = t.885 [mm4/kg2],  BI, = - -5 .25t , t0  -2, B~2 = B3a = 

=,--2.297.t0 -2, B 1 2 = B I a = - - t 3 . t 7 9 - 1 0  -~ [mma/kg2].  (2.3) 

However, ia the diametral  plane, reasoning in the same way as 

in deriving relations (1.7), we obtain for the coefficientS A2a and Bz3 
the expressions 

/A~ + A= -~ 2 A ~  
2~ = V A~ + Ass + 2A=, g~ = ~r ~ + B= + 2B~ J" (2. 4) 
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Hence, using (1.7),  we find 

A2~ = 2AI1 + A~  = t.805 [mm4/kg2] ,  

B~ ~ 2Blx + B,8 = - - t 2 . 7 9 9 . t f f "  [mm4/kg2] .  (2 .5)  

In the g iven  case of anisotropy the ratios of the transverse strain 

rates no longer r ema in  constant  for the different  stresses a t  Which the  
one-d imens iona l  creep tests are conducted.  Thus, for example ,  in 
tes t ing test p ieces  cut  in the second direct ion,  the rat io  of transverse 

strain rates measured in the first and third direct ions in accordance  

with (1.4), using (2. 2), wi l l  be  

B -- ~hl (2) : ~ ( ~ )  = 

_ 2 V A ~ I +  A~8 (AnBss --B11Aa,) - -  A~ (Bn + Baa)'~ 
2 ~ A ~ I +  A~a (BlIAss - -  AllBsa) -- All (Bll + B63)2~ ~ 

(2 .6)  

i. e . ,  a l i nea r - f r ac t iona l  funct ion of the stresses. 
Below we present values  of R* ca l cu la t ed  from (2 .6)  and R ~ m e a -  

sured exper imenta l ly .  The sat isfactory ag reemen t  be tween the ex-  
pe r imenta l  and ca l cu la t ed  data  on the t ransverse strain ra t io  for dif-  

ferent  stresses gives a cer ta in  ind i rec t  conf i rmat ion  of the hypothesis 

of the ex i s tence  of a flow po ten t ia l  (1 .2)  for anisotropic med ia  and 

its use in t e c h n i c a l  ca lcu la t ions .  

k g / m m  ~ = 6 7 8 9 t0  o, 

R* = 0 . 8 0  0.72 0.67 0.63 0.60 
B ~ = - -  0.65 0.63 0.57 0.50 

Figure 2 shows project ions of the po ten t ia l  flow surfaces �9 = const 

in the dev ia tor ic  plane,  ca l cu la t ed  for the g iven  m a t e r i a l  at  stress 
leve ls  corresponding to the process of creep along the first pr inc ipal  
d i rec t ion  of anisotropy at  o = 6, 8, 10, and 12 k g / m m  2. 

As migh t  be expected,  at  o = 6 k g / m m  z the surface �9 = const is 
close to a c i rcular  cyl inder ,  and its project ion in the dev ia tor ic  p lane  
almost coincides with the Mises circle. The anisotropy becomes man- 

ifest as the stress l eve l  increases,  as re f lec ted  by the change in the 
shape of the contour q> = const in the dev ia tor ic  plane.  Although the 

d i ame t r a l  p lane  XzX~ of the rod is also a p lane  of isotropy with re- 

spect  to the creep propert ies under one -d imens iona l  loading,  the 

project ions on the dev ia tor ic  p lane  of part  of the surfaces @ = const 
in the sectors -on ,  o2 and - � 8 9  03 are not segments  of arcs of circles:  
a l l  the  contours in the dev ia to r ic  p tane  are compressed in a d i rec t ion  

perpendicular  to the project ion of o t axis on that  plane.  
The author thanks A. F. Nikitenko, Yu. V. Zakharov,  and V. P. 

Kolupaev for their  assis tance in conduct ing the tests. 
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